SAV 方法求解流固耦合问题(二)
求解的流固耦合问题中,流体的速度为非齐次Dirichlet边界条件。
一阶时间离散:
如果边界速度不为0, \[ E(t)=\frac{\rho}{2}\int_{\Omega}|\mathbf{u}|^{2}+\int_{B_{r}}W(\mathcal{X}) \]
\[ \begin{split} \frac{dE(t)}{dt}&=\rho\int_{\Omega}\frac{\partial\mathbf{u}}{\partial t}\cdot\mathbf{u}+\int_{B_{r}}\frac{\partial W}{\partial t}\\ &=\rho\int_{\Omega}(\frac{\partial\mathbf{u}}{\partial t}+\mathbf{u}\cdot\nabla\mathbf{u})\cdot\mathbf{u}-\frac{\rho}{2}\int_{\partial\Omega}(\mathbf{n}\cdot\mathbf{u})|\mathbf{u}|^{2}+\int_{B_{r}}\frac{\partial W}{\partial \mathbb{F}}:\frac{\partial \mathbb{F}}{\partial t} \end{split} \]
令\(q=\sqrt{E(t)+\delta}\) \[ \begin{split} \frac{dq}{dt}&=\frac{1}{2}\frac{1}{\sqrt{E(t)+\delta}}\frac{dE(t)}{dt}=\frac{1}{2q}\frac{dE(t)}{dt}\\ &=\frac{1}{2q}\left(\rho\int_{\Omega}(\frac{\partial\mathbf{u}}{\partial t}+\mathbf{u}\cdot\nabla\mathbf{u})\cdot\mathbf{u}-\frac{\rho}{2}\int_{\partial\Omega}(\mathbf{n}\cdot\mathbf{u})|\mathbf{u}|^{2}+\int_{B_{r}}\frac{\partial W}{\partial \mathbb{F}}:\frac{\partial \mathbb{F}}{\partial t}\right) \end{split} \] 那么IB方法等价于 \[ \begin{split} &\rho(\frac{\partial{\mathbf{u}}}{\partial t}+\frac{q}{\sqrt{E(t)+\delta}}\mathbf{u}\cdot\nabla\mathbf{u})-\mu\Delta \mathbf{u}+\nabla p= \frac{q}{\sqrt{E(t)+\delta}}f\\ &\frac{dq}{dt}=\frac{\rho}{2q}\int_{\Omega}(\frac{\partial\mathbf{u}}{\partial t}+\mathbf{u}\cdot\nabla\mathbf{u})\cdot\mathbf{u}-\frac{\rho}{4q}\int_{\partial\Omega}(\mathbf{n}\cdot\mathbf{u})|\mathbf{u}|^{2}+\frac{1}{2q}\int_{B_{r}}\frac{\partial W}{\partial \mathbb{F}}:\frac{\partial \mathbb{F}}{\partial t}\\ &\nabla\cdot\mathbf{u}=0\\ &\int_{B_{r}}\mathbf{F}\cdot\mathbf{V}=-\int_{B_{r}}\mathbb{P}:\nabla\mathbf{V}\\ &\mathbf{f}=\int_{B_{r}}\mathbf{F}\cdot\delta(\mathbf{x}-\mathcal{X}(\mathbf{X},t) d\mathbf{X}\\ &\frac{\partial\mathcal{X}}{\partial t}=\int_{\Omega}\mathbf{u}\cdot\delta(\mathbf{x}-\mathcal{X}(\mathbf{X},t)) d\mathbf{x} \end{split} \] 数值格式: \[ \begin{equation}\label{1} \begin{split} &\rho\frac{\mathbf{u}^{n+1}-\mathbf{u}^{n}}{\Delta t}-\mu\Delta\mathbf{u^{n+1}}+\nabla p^{n+1}=\frac{q^{n+1}}{\sqrt{E(\bar{t})+\delta}}(f^{n}-\rho\mathbf{u}^{n}\cdot\nabla \mathbf{u}^{n})\\ &\frac{q^{n+1}-q^{n}}{\Delta t}=\frac{1}{2q^{n+1}}\frac{\rho}{\Delta t}\int_{\Omega}(\mathbf{u}^{n+1}-\mathbf{u}^{n})\cdot\mathbf{u}^{n+1}+\frac{\rho}{2\sqrt{E(\bar{t})+\delta}}\int_{\Omega}\mathbf{u}^{n}\cdot\nabla\mathbf{u}^{n}\cdot\mathbf{u}^{n+1}-\frac{\rho}{4q^{n+1}}\int_{\partial\Omega}(\mathbf{n}\cdot\mathbf{u}^{n+1})|\mathbf{u^{n+1}}|^{2}+\frac{1}{2\sqrt{E(\bar{t})+\delta}}\int_{B_{r}}\mathbb{P}^{n}:\frac{ \mathbb{F}^{n+1}-\mathbb{F}^{n}}{\Delta t}\\ &\nabla\cdot\mathbf{u}^{n+1}=0\\ &\int_{B_{r}}\mathbf{F}^{n}\cdot\mathbf{V}=-\int_{B_{r}}\mathbb{P}^{n}:\nabla\mathbf{V}\\ &\mathbf{f}^{n}=\int_{B_{r}}\mathbf{F}^{n}\cdot\delta(\mathbf{x}-\mathcal{X}(\mathbf{X},t) d\mathbf{X}\\ &\frac{\mathcal{X}^{n+1}-\mathcal{X}^{n}}{\Delta t}=\int_{\Omega}\mathbf{u}^{n+1}\cdot\delta(\mathbf{x}-\mathcal{X}(\mathbf{X},t)) d\mathbf{x} \end{split} \end{equation} \] 给方程1-1的两边关于\(\mathbf{u}^{n+1}\)做\(L^{2}\)内积,同时利用1-3式可得: \[ \begin{split} &\frac{\rho}{\Delta t}\int_{\Omega}(\mathbf{u}^{n+1}-\mathbf{u}^{n})\cdot\mathbf{u}^{n+1}-\mu\int_{\Omega}\Delta\mathbf{u}^{n+1}\cdot\mathbf{u}^{n+1}+\int_{\Omega}\nabla p^{n+1}\cdot\mathbf{u}^{n+1}=\int_{\Omega}\frac{q^{n+1}}{\sqrt{E(\bar{t})+\delta}}(f^{n}-\mathbf{u}^{n}\cdot\nabla \mathbf{u}^{n})\cdot\mathbf{u}^{n+1}\\ &\frac{\rho}{\Delta t}\int_{\Omega}(\mathbf{u}^{n+1}-\mathbf{u}^{n})\cdot\mathbf{u}^{n+1}-\left(\mu\int_{\partial\Omega}(\mathbf{n}\cdot\nabla\mathbf{u}^{n+1})\cdot\mathbf{u}^{n+1}-\mu\int_{\Omega}|\nabla\mathbf{u}^{n+1}|^{2}\right)+\left(\int_{\partial\Omega}(\mathbf{n}\cdot\mathbf{u}^{n+1})p^{n+1}-\int_{\Omega}p^{n+1}\nabla\cdot\mathbf{u}^{n+1}\right)\\ &=\int_{\Omega}\frac{q^{n+1}}{\sqrt{E(\bar{t})+\delta}}(f^{n}-\mathbf{u}^{n}\cdot\nabla \mathbf{u}^{n})\cdot\mathbf{u}^{n+1}\\ &\textcolor{red}{\frac{\rho}{\Delta t}\int_{\Omega}(\mathbf{u}^{n+1}-\mathbf{u}^{n})\cdot\mathbf{u}^{n+1}}-\mu\int_{\partial\Omega}(\mathbf{n}\cdot\nabla\mathbf{u}^{n+1})\cdot\mathbf{u}^{n+1}+\mu\int_{\Omega}|\nabla\mathbf{u}^{n+1}|^{2}+\int_{\partial\Omega}(\mathbf{n}\cdot\mathbf{u}^{n+1})p^{n+1}\\ &=\int_{\Omega}\frac{q^{n+1}}{\sqrt{E(\bar{t})+\delta}}\mathbf{f}^{n}\cdot\mathbf{u}^{n+1}\textcolor{red}{-\int_{\Omega}\frac{q^{n+1}}{\sqrt{E(\bar{t})+\delta}}\rho\mathbf{u}^{n}\cdot\nabla \mathbf{u}^{n}\cdot\mathbf{u}^{n+1}} \end{split} \] 给方程1-2两边同时乘以\(2q^{n+1}\)可得: \[ 2q^{n+1}(\frac{q^{n+1}-q^{n}}{\Delta t}) =\textcolor{red}{\frac{\rho}{\Delta t}\int_{\Omega}(\mathbf{u}^{n+1}-\mathbf{u}^{n})\cdot\mathbf{u}^{n+1}}\textcolor{red}{+\frac{\rho q^{n+1}}{\sqrt{E(\bar{t})+\delta}}\int_{\Omega}\mathbf{u}^{n}\cdot\nabla\mathbf{u}^{n}\cdot\mathbf{u}^{n+1}}-\frac{\rho}{2}\int_{\partial\Omega}(\mathbf{n}\cdot\mathbf{u}^{n+1})|\mathbf{u^{n+1}}|^{2}+\frac{q^{n+1}}{\sqrt{E(\bar{t})+\delta}}\int_{B_{r}}\mathbb{P}^{n}:\frac{ \mathbb{F}^{n+1}-\mathbb{F}^{n}}{\Delta t} \] 将上面的两式相加可得: \[ \begin{equation} \begin{split} 2q^{n+1}(\frac{q^{n+1}-q^{n}}{\Delta t})=-\mu\int_{\Omega}|\nabla\mathbf{u}^{n+1}|^{2}+\int_{\Omega}\frac{q^{n+1}}{\sqrt{E(\bar{t})+\delta}}\mathbf{f}^{n}\cdot\mathbf{u}^{n+1}+\mu\int_{\partial\Omega}(\mathbf{n}\cdot\nabla\mathbf{u}^{n+1})\cdot\mathbf{w}^{n+1}-\int_{\partial\Omega}(\mathbf{n}\cdot\mathbf{w}^{n+1})p^{n+1}\\ -\frac{\rho}{2}\int_{\partial\Omega}(\mathbf{n}\cdot\mathbf{w}^{n+1})|\mathbf{w}^{n+1}|^{2}+\frac{q^{n+1}}{\sqrt{E(\bar{t})+\delta}}\int_{B_{r}}\mathbb{P}^{n}:\frac{ \mathbb{F}^{n+1}-\mathbb{F}^{n}}{\Delta t} \end{split} \end{equation} \] 令1-4式中的\(\mathbf{V}=\mathcal{X}^{n+1}-\mathcal{X}^{n}\), 则 \[ \begin{split} \int_{B_{r}}\mathbf{F}^{n}\cdot(\mathcal{X}^{n+1}-\mathcal{X}^{n})&=-\int_{B_{r}}\mathbb{P}^{n}:\nabla(\mathcal{X}^{n+1}-\mathcal{X}^{n})\\ &=-\int_{B_{r}}\mathbb{P}^{n}:(\mathbb{F}^{n+1}-\mathbb{F}^{n}) \end{split} \] 将上式代入中可得: \[ 2q^{n+1}(\frac{q^{n+1}-q^{n}}{\Delta t})=-\mu\int_{\Omega}|\nabla\mathbf{u}^{n+1}|^{2}+\int_{\Omega}\frac{q^{n+1}}{\sqrt{E(\bar{t})+\delta}}\mathbf{f}^{n}\cdot\mathbf{u}^{n+1}+\mu\int_{\partial\Omega}(\mathbf{n}\cdot\nabla\mathbf{u}^{n+1})\cdot\mathbf{w}^{n+1}-\int_{\partial\Omega}(\mathbf{n}\cdot\mathbf{w}^{n+1})p^{n+1}\\ -\frac{\rho}{2}\int_{\partial\Omega}(\mathbf{n}\cdot\mathbf{w}^{n+1})|\mathbf{w}^{n+1}|^{2}-\frac{q^{n+1}}{\sqrt{E(\bar{t})+\delta}}\frac{1}{\Delta t}\int_{B_{r}}\mathbf{F}^{n}\cdot(\mathcal{X}^{n+1}-\mathcal{X}^{n}) \] 对于1-5式关于\(\frac{q^{n+1}}{\sqrt{E(\bar{t})+\delta}}\mathbf{u}^{n+1}\)关于\(L^{2}\)做内积可得: \[ (\mathbf{f}^{n},\frac{q^{n+1}}{\sqrt{E(\bar{t})+\delta}}\mathbf{u}^{n+1})_{\Omega}=(\int_{B_{r}}\mathbf{F}^{n}\cdot\delta(\mathbf{x}-\mathcal{X}(\mathbf{X},t) d\mathbf{X},\frac{q^{n+1}}{\sqrt{E(\bar{t})+\delta}}\mathbf{u}^{n+1})_{\Omega} \] 对于1-6式关于\(\frac{q^{n+1}}{\sqrt{E(\bar{t})+\delta}}\mathbf{F}^{n}\)关于\(L^{2}\)做内积可得: \[ \frac{1}{\Delta t}(\mathcal{X}^{n+1}-\mathcal{X}^{n},\frac{q^{n+1}}{\sqrt{E(\bar{t})+\delta}}\mathbf{F}^{n})_{B_{r}}=(\int_{\Omega}\mathbf{u}^{n+1}\cdot\delta(\mathbf{x}-\mathcal{X}(\mathbf{X},t)) d\mathbf{x},\frac{q^{n+1}}{\sqrt{E(\bar{t})+\delta}}\mathbf{F}^{n})_{B_{r}} \] 根据插值算子和延拓算子满足对偶性可得 \[ \Delta t(\mathbf{f}^{n},\frac{q^{n+1}}{\sqrt{E(\bar{t})+\delta}}\mathbf{u}^{n+1})_{\Omega}=(\mathcal{X}^{n+1}-\mathcal{X}^{n},\frac{q^{n+1}}{\sqrt{E(\bar{t})+\delta}}\mathbf{F}^{n})_{B_{r}} \] 代入表达式中可得 \[ 2q^{n+1}(\frac{q^{n+1}-q^{n}}{\Delta t})=-\mu\int_{\Omega}|\nabla\mathbf{u}^{n+1}|^{2}+\mu\int_{\partial\Omega}(\mathbf{n}\cdot\nabla\mathbf{u}^{n+1})\cdot\mathbf{w}^{n+1}-\int_{\partial\Omega}(\mathbf{n}\cdot\mathbf{w}^{n+1})p^{n+1}\\ -\frac{\rho}{2}\int_{\partial\Omega}(\mathbf{n}\cdot\mathbf{w}^{n+1})|\mathbf{w}^{n+1}|^{2} \] 定理1:如果边界速度\(\mathbf{w}^{n+1}=0\),数值格式满足下面的等式,且是无条件能量稳定的。 \[ 2q^{n+1}(\frac{q^{n+1}-q^{n}}{\Delta t})+\mu\int_{\Omega}|\nabla\mathbf{u}^{n+1}|^{2}=0 \]
数值实现过程:
令\(S=\frac{q^{n+1}}{\sqrt{E(\bar{t})+\delta}}\),那么N-S方程可写成: \[ \frac{\rho}{\Delta t}\mathbf{u}^{n+1}+\nabla p^{n+1}-\mu\Delta\mathbf{u^{n+1}}=S(f^{n}-\rho\mathbf{u}^{n}\cdot\nabla \mathbf{u}^{n}))+\frac{\rho}{\Delta t}\mathbf{u}^{n}\\ \] 由于\(\nabla\cdot\mathbf{u}^{n+1}=0\), 那么 \[ \frac{\rho}{\Delta t}\mathbf{u}^{n+1}+\nabla p^{n+1}=S(f^{n}-\rho\mathbf{u}^{n}\cdot\nabla \mathbf{u}^{n}))+\frac{\rho}{\Delta t}\mathbf{u}^{n}-\mu\nabla\times\nabla\times\mathbf{u}^{n+1} \] 令\(q\)是连续空间上的任意测试函数,则上式关于\(\nabla q\)做\(L^{2}\)内积可得: \[ \int_{\Omega}\nabla p^{n+1}\cdot\nabla q=\int_{\Omega}S(f^{n}-\rho\mathbf{u}^{n}\cdot\nabla \mathbf{u}^{n})\cdot\nabla q-\mu\int_{\partial\Omega}\mathbf{n}\times\mathbf{\omega}^{n+1}\cdot\nabla q-\frac{\rho}{\Delta t}\int_{\Omega}\mathbf{n}\cdot\mathbf{w}^{n+1}q \] 其中\(\mathbf{\omega}=\nabla\times\mathbf{u}\)和\(\int_{\Omega}\nabla\times\mathbf{\omega}\cdot \nabla q=\int_{\partial \Omega}\mathbf{n}\times\mathbf{\omega}\cdot\nabla q\). 为了简化计算,则\(\mathbf{n}\times\mathbf{\omega}^{n+1}=\mathbf{n}\times\mathbf{\bar{\omega}}^{n+1}|_{\partial \Omega}\), 其中\(\mathbf{\bar{\omega}}^{n+1}=\nabla\times\mathbf{u}^{n}\), 显示表示。从而上式可表示 \[ \int_{\Omega}\nabla p^{n+1}\cdot\nabla q=\int_{\Omega}S(f^{n}-\rho\mathbf{u}^{n}\cdot\nabla \mathbf{u}^{n})\cdot\nabla q-\mu\int_{\partial\Omega}\mathbf{n}\times\nabla\times\mathbf{u}^{n}\cdot\nabla q-\frac{\rho}{\Delta t}\int_{\Omega}\mathbf{n}\cdot\mathbf{w}^{n+1}q\\ \int_{\Omega}p^{n+1}=0 \] 上式可求解\(p^{n+1}\).
如何求解\(p^{n+1}\)
1)对于\(p^{n+1}_{1}\): \[ \int_{\Omega}\nabla p_{1}^{n+1}\cdot\nabla q=-\mu\int_{\partial\Omega}\mathbf{n}\times\nabla\times\mathbf{u}^{n}\cdot\nabla q-\frac{\rho}{\Delta t}\int_{\Omega}\mathbf{n}\cdot\mathbf{w}^{n+1}q\\ \int_{\Omega}p_{1}^{n+1}=0 \] 1)对于\(p^{n+1}_{2}\): \[ \int_{\Omega}\nabla p_{2}^{n+1}\cdot\nabla q=\int_{\Omega}(f^{n}-\rho\mathbf{u}^{n}\cdot\nabla \mathbf{u}^{n})\cdot\nabla q\\ \int_{\Omega}p_{2}^{n+1}=0 \] 很容易验证\(p^{n+1}=p_{1}^{n+1}+Sp_{2}^{n+1}\)
利用\(p^{n+1}=p_{1}^{n+1}+Sp_{2}^{n+1}\),则 \[ \frac{\rho}{\mu\Delta t}\mathbf{u}^{n+1}-\Delta\mathbf{u^{n+1}}=\frac{S}{\mu}(f^{n}-\rho\mathbf{u}^{n}\cdot\nabla \mathbf{u}^{n}-\nabla p^{n+1}_{2})+(\frac{\rho}{\mu\Delta t}\mathbf{u}^{n}-\frac{1}{\mu}\nabla p_{1}^{n+1})\\ \] 令\(\phi\)是任意测试函数,且\(\phi|_{\Omega}=0\),对上述关于\(\phi\)做\(L^{2}\)内积, \[ \frac{\rho}{\mu\Delta t}\int_{\Omega}\mathbf{u}^{n+1}\phi+\int_{\Omega}\nabla\phi\cdot\nabla\mathbf{u^{n+1}}=\frac{S}{\mu}\int_{\Omega}(f^{n}-\rho\mathbf{u}^{n}\cdot\nabla \mathbf{u}^{n}-\nabla p^{n+1}_{2})\phi+\int_{\Omega}(\frac{\rho}{\mu\Delta t}\mathbf{u}^{n}-\frac{1}{\mu}\nabla p_{1}^{n+1})\phi \] 上式可求\(\mathbf{u}^{n+1}\)
如何求解\(\mathbf{u}^{n+1}\)
1)对于\(\mathbf{u}^{n+1}_{1}\): \[ \frac{\rho}{\mu\Delta t}\int_{\Omega}\mathbf{u}_{1}^{n+1}\phi+\int_{\Omega}\nabla\phi\cdot\nabla\mathbf{u}_{1}^{n+1}=\int_{\Omega}(\frac{\rho}{\mu\Delta t}\mathbf{u}^{n}-\frac{1}{\mu}\nabla p_{1}^{n+1})\phi\\ \mathbf{u}_{1}^{n+1}=\mathbf{w}^{n+1} \] 1)对于\(\mathbf{u}^{n+1}_{2}\): \[ \frac{\rho}{\mu\Delta t}\int_{\Omega}\mathbf{u}_{2}^{n+1}\phi+\int_{\Omega}\nabla\phi\cdot\nabla\mathbf{u}_{2}^{n+1}=\frac{1}{\mu}\int_{\Omega}(f^{n}-\rho\mathbf{u}^{n}\cdot\nabla \mathbf{u}^{n}-\nabla p^{n+1}_{2})\phi\\ \mathbf{u}_{1}^{n+1}=0 \] 很容易验证\(\mathbf{u}^{n+1}=\mathbf{u}_{1}^{n+1}+S\mathbf{u}_{2}^{n+1}\) \[ 2q^{n+1}(\frac{q^{n+1}-q^{n}}{\Delta t})=-\mu\int_{\Omega}|\nabla\mathbf{u}^{n+1}|^{2}+\mu\int_{\partial\Omega}(\mathbf{n}\cdot\nabla\mathbf{u}^{n+1})\cdot\mathbf{w}^{n+1}-\int_{\partial\Omega}(\mathbf{n}\cdot\mathbf{w}^{n+1})p^{n+1}\\ -\frac{\rho}{2}\int_{\partial\Omega}(\mathbf{n}\cdot\mathbf{w}^{n+1})|\mathbf{w}^{n+1}|^{2} \] 上述方程两边同时乘以\(\frac{q^{n+1}}{\sqrt{E(\bar{t})+\delta}}\)则 \[ 2q^{n+1}(\frac{q^{n+1}-q^{n}}{\Delta t})\frac{q^{n+1}}{\sqrt{E(\bar{t})+\delta}}=-\mu\frac{q^{n+1}}{\sqrt{E(\bar{t})+\delta}}\int_{\Omega}|\nabla\mathbf{u}^{n+1}|^{2}+\mu\frac{q^{n+1}}{\sqrt{E(\bar{t})+\delta}}\int_{\partial\Omega}(\mathbf{n}\cdot\nabla\mathbf{u}^{n+1})\cdot\mathbf{w}^{n+1}-\frac{q^{n+1}}{\sqrt{E(\bar{t})+\delta}}\int_{\partial\Omega}(\mathbf{n}\cdot\mathbf{w}^{n+1})p^{n+1}\\ -\frac{q^{n+1}}{\sqrt{E(\bar{t})+\delta}}\frac{\rho}{2}\int_{\partial\Omega}(\mathbf{n}\cdot\mathbf{w}^{n+1})|\mathbf{w}^{n+1}|^{2}\\ \] 则 \[ \frac{2}{\Delta t}S^{3}(E(\bar{t})+\delta)-\frac{2 q^{n}}{\Delta t}S^{2}\sqrt{E(\bar{t})+\delta}+A_{1}S+A_{2}S^{2}+A_{3}S^{3}=0\\ A_{1}= \mu\int_{\Omega}|\nabla\mathbf{u}_{1}^{n+1}|^{2}-\mu\int_{\partial\Omega}(\mathbf{n}\cdot\nabla\mathbf{u}_{1}^{n+1})\cdot\mathbf{w}^{n+1}+\int_{\partial\Omega}(\mathbf{n}\cdot\mathbf{w}^{n+1})p_{1}^{n+1}+\frac{\rho}{2}\int_{\partial\Omega}(\mathbf{n}\cdot\mathbf{w}^{n+1})|\mathbf{w}^{n+1}|^{2}\\ A_{2}=2\mu\int_{\Omega}\nabla \mathbf{u}^{n+1}_{1}:\nabla \mathbf{u}^{n+1}_{2}-\mu\int_{\partial\Omega}(\mathbf{n}\cdot\nabla\mathbf{u}_{2}^{n+1})\cdot\mathbf{w}^{n+1}+\int_{\partial\Omega}(\mathbf{n}\cdot\mathbf{w}^{n+1})p_{2}^{n+1} \\ A_{3}=\mu\int_{\Omega}|\nabla\mathbf{u}_{2}^{n+1}|^{2} \]